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The paper present a hybrid formulation coupling the surface impedance boundary condition to deal with conductive and magnetic
materials and the boundary element method to account rigorously for the regularity conditions of the magnetic field at infinity.
Based on duality relations, the field variables are associated to spatial elements starting from the dual mesh, overcoming some of
the performance issues of the previously published results. The new formulation showed also a better accuracy in the calculation of
postprocessing quantities.
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I. INTRODUCTION

IN RECENT papers [1], [2] the possibility of coupling
nonlinear surface impedance boundary conditions (SIBC)

with the boundary element method (BEM) was presented. The
BEM-SIBC hybrid formulation was based on the definition of
integral variables over two intertwined surface meshes, namely
primal and dual meshes, linked by duality relations. This partic-
ular choice gave rise to a lumped circuit network of admittances
in the conductive domain which was coupled with the boundary
element formulated in terms of reduced scalar potential and
its normal derivative. The method showed the benefits of the
two formulations: the SIBC allowed the use of analytical or
semi-analytical solution of the the electromagnetic field in thin
conductive layers [3], also in case of nonlinear material, while
the BEM rigorously accounted for the regularity conditions of
the magnetic field at infinity. The main disadvantage of the
method was the definition of the SIBC equations in terms of
the admittance matrix Y, that required a direct LU factorization
in order to obtain the impedance matrix Z necessary for
the solution of the final system. This drawback was even
more amplified in case of nonlinear iterations. Despite some
strategies for the direct construction of the matrix Z on the
primal mesh are available in the literature, like in [4], these
technique are not consistent [5]. We propose to solve this
problem by swapping the variable association between the
primal and dual mesh, building the matrix Z directly on the
dual mesh.

II. SPACE DISCRETIZATION AND CONVENTIONAL
SIBC-BEM

The domain under study is constituted by conductive re-
gions, where eddy currents occur, external sources and external
open space. It is assumed that the combination of the material
properties and the source frequency is such that the penetration
depth δ can be considered small with respect to the conductive
region dimension. Under this hypothesis, it is possible to
discretize only the surface of the domain by an unstructered
mesh, referred to as simplicial mesh. Starting from this mesh, a
second based on barycentric subdivision is derived. This second
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Fig. 1: Definition of variables: (a) conventional association (b)
dual association.

discretization is referred to as barycentric mesh, Fig. 1a. The
electric voltages e and the magnetic fluxes b are associated
to the edges and the faces of the simplicial mesh, respectively.
The magnetic scalar potential ψ and its normal derivative ∂nψ,
the magneto-motive force and the electric current are defined
on the nodes, edges and faces of the barycentric mesh. Using
the Ampère’s and Faraday’s laws, imposing the continuity of
the tangential component of the magnetic field and the normal
component of the magnetic flux density and coupling with the
BEM equation, the final system is[

−H W

CY−1CT jωµ0S

] [
ψ
∂nψ

]
=

[
0
b

]
(1)

where: H and W are the standard matrices that arise from
the boundary element method formulated in terms of reduced
magnetic scalar potential ψ and its normal derivative ∂nψ, C is
the primal curl matrix linking triangular faces to their bounding
edges, Y is the admittance linking voltage to current, S is
the area matrix of each triangular facet. The right hand side
b = CY−1hS+jωµ0SHSn, where HSn and hS are contributes
of source currents on faces and along primal edges. Details of
the formulation can be found in [2]. The unknowns of the
systems are the NF scalar potentials ψ and their NF normal
derivatives ∂nψ defined on barycentric nodes.

III. DUAL SIBC-BEM
The previously described problem is re-formulated by swap-

ping the association of the variables with the space elements.



This time the electric voltages are associated to the edges
and the magnetic fluxes to the faces of the barycentric mesh,
whereas the scalar potentials and their normal derivatives,
the magneto-motive forces and the currents are associated
respectively to the simplicial nodes, edges and faces, Fig. 1b.
In terms of matrix operators, Faraday’s law becomes:

C̃e = jωb (2)

where, in 2-dimensional discretization, the discrete curl op-
erator C̃ = GT. The Ampère’s equation reads h = i. The
constitutive equation links the voltages to the currents. The
electric voltage can be calculated by integration of the electric
field along dual edges:

e′j =

∫
L̃j

~E0 · ~tdL =

∫
L̃j

1

σ
~J0 · ~tdL (3)

where the current density ~J(z) is a function of the depth
coordinate z and is expressed as:

~J(z) = ~J0f(z) = ~J0 exp
−(1+j) zδ (4)

Expanding the current density using facet elements ~wm, the
surface current density becomes:

~J0 =

3∑
m=1

~wmim∫ ∞
0

f(z)dz

=
1 + j

δ

3∑
m=1

~wmim (5)

Thus, (6) becomes

e′j =

3∑
m=1

im
1 + j

σδ

∫
L̃j

~wm · ~tdL =

3∑
m=1

Z ′jmim (6)

Assembling element-by-element the impedance matrix Z, the
voltage-current relation becomes e = Zi

A. Interface conditions and BEM formulation

The interface conditions are used to imposed the continuity
of the tangential component of the magnetic filed and the
normal component of the magnetic flux density. Similarly to
the conventional SIBC-BEM formulation, these equations are:

h = −Gψ + hS (7)
b = µ0S(−∂nψ +HSn) (8)

but the matrix is not diagonal anymore.
Because the scalar potentials and their normal derivative are

defined on the nodes of the simplicial mesh, linear elements
are used. This requires the use of nodal functions N and the
calculation of the integrals of the Green’s function G(~ri, ~rj):

{H}ij = δijα−
∫
Sj

Ni
∂G(~ri, ~rj)

∂n
dS (9)

{W}ij =
∫
Sj

NiG(~ri, ~rj)dS (10)

The additional burden with respect to the BEM formulation
with constant elements is usually negligible when using ana-
lytical formulas [6].

Fig. 2: Benchmark sphere and sampling points. The external
field B0 is aligned with the z axis.

Fig. 3: Polar component of the magnetic flux density in prox-
imity of the sphere surface. Line: analytical solution, circle:
conventional SIBC-BEM, star: dual SIBC-BEM.

IV. RESULTS

The two formulations are compared against the analytical
solution of a sphere of radius R0 = 5 cm in a uniform field
B0 = 1 mT at 1 kHz. The sphere is characterized by σ =
10 MS/m and µR = 1.The magnetic field is measured close
to the sphere surface, Fig. 2. Fig. 3 shows the polar component
of the magnetic flux density. The dual SIBC-BEM shows a
better accuracy due to the use to higher order BEM elements.
In addition the number of unknowns is almost halved, since
the number of triangles in a surface mesh is approximately
twice the number of nodes. In the full paper details about the
numerical formulation and the convergence analysis of the two
methods will be provided.
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